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ABSTRACT 

This paper provides an overview of the journey to date exploring the data/information 
processing potential of Quantum technologies based computational system, i.e. Quantum 
Computer (QCs), for defence applications.  The journey is through the lens of UK MOD 
research, undertaken and managed by Dstl to advance capabilities in the Quantum field for defence 
and security.  The aim is aligned with UK National and NATO interests in exploiting this field 
and the Emerging Disruptive Technologies (EDTs) that arise from it.  Such work is part of the UK 
government’s strategic thrust, and investments, to position the country and economy at the forefront of a 
potential ‘game changing’ area. 

Research covered includes assessment of QCs and defence applications, with emphasis on 
intrinsically challenging computations, such as in optimisation and signal/image processing, and 
of approaches to implement Artificial Intelligence (AI)/Machine Learning (ML) algorithms. The 
work compared the State-Of-The-Art (SOTA) possible with commodity digital systems and 
QCs to understand where, and how, significant advantages could be found. We show that, with 
exceptions, the current limitations in Quantum system technologies and architectures (e.g. data 
conditioning, input/output interfaces, bandwidths, internal interconnections, and error corrections) 
offer many orders of magnitude lower performance than digital systems. Nevertheless, we also 
identify areas where with current development trends and further improvements could result in 
a converse finding; that in any case hybrid systems will be needed with commensurate systems 
engineering methodology, models, tools, and processes. These are the challenges that need to be 
overcome and covered in conclusions and recommendations. 

Keywords:  Quantum Computers, Quantum annealing, Image Processing, Machine Learning, 
Boltzmann machines, D-Wave 

1.0 INTRODUCTION

We are currently said to be in ‘the second quantum revolution’ with continual emergence of new quantum 
technologies [1] that are predicted (perhaps ‘hyped’) to have a profound impact on the current trend of a 
globally inter-connected world supported by machines (i.e. Artificial Intelligence (AI)/Machine 
Learning (ML)). Consequently, the word quantum now precedes many active research fields (e.g. 
quantum communications, quantum sensing, quantum cryptography) advancing 
understanding of deeper manifestations of the quantum world and realising techniques and devices 
for exploitation.  A particular example is Quantum Information Processing (QIP) and Quantum 
Computers (QCs) which is the subject of this paper.  Readers can find a simple introduction to 
Quantum Science & Technology (S&T) via the Defence Science and Technology Laboratory (Dstl) 
‘biscuit book’ [9]. 

The pressing challenge in QIP and QC is physically realising the qubits, in adequate numbers as a coupled 
coherent ensemble.  Driving, controlling and managing the whole superposed and entangled states with 
low measurement errors (noise) in sufficient time to have utility as a computational system (i.e. able to 
program, execute processes, Input/Output (I/O) data to communicate information, internally and 
externally). 
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Engineering Quantum Enabled Information Processing 
This is where, since the last decade, great advances are being made in the devices (systems) being built
and the noise tolerant algorithms to run on them [2].  This era has been termed Noisy Intermediate Scale 
Quantum (NISQ) and much research directed to produce Quantum Processing Unit (QPU) devices for 
QCs [3]. Of these systems and type, the IBM circuit model NISQ computers1 plus the following two are 
currently used in our research: 

The D-Wave system2:  This is the‘world’s first commercially available QC’. QPUs are 
superconducting circuits, and loop couplers, formed using niobium loops where current flow 
(clockwise/anti) (flux) qubit states are implemented with magnetic fields.  This paradigm is different to 
other QCs, such as circuit gates, quantum logic, as it is an adiabatic quantum computer. Here system 
state is prepared to a reference Hamiltonian and evolved slowly (adiabatically) towards representation 
of the problem with the final state of the Hamiltonian representing the optimised solution. Hence the 
system is well suited for Quantum Annealing3 and application to Quadratic Unconstrained Boundary 
Optimisation (QUBO) problems found in many sectors. We used the Advantage 2.1 system and their 
latest version has over 5000 qubits reporting a significant performance breakthrough, topology and 
connectivity [4]. 

ORCA system4: This QC is from a new UK spin-out company, established in 2019, from Oxford 
University. The system exploits their research work done as part of the UK National Quantum Technology 
Hub (NQTH) in Networked Quantum Information Technologies NQIT [8]. This includes exploiting 
ion traps, optical fibres and linear optics for photon circuits, detection, multiplexing, memory and 
spectral-temporal sampling [5][6]. A system application, with encouraging results, has been determining 
non-linear functions for ML algorithms (e.g. Neural Nets (NNs) including Generative Adversarial 
Networks (GANs)) [7].  

This paper consists of a summary of the UK MOD S&T strategy supporting research programmes 
and projects and how this fits into the national and global landscape.  The results and outcomes of one of 
these projects using the D-Wave Advantage 2.1 system is covered in detail in remaining sections, 
finishing with conclusions and the way forward. 

2.0 QUANTUM LANDSCAPE AND STRATEGY

The UK was the first nation to implement National Quantum Technologies Programme (NQTP)5 as part 
of the National Quantum Strategy published in 2013, and has recently refreshed both [8].  £2.5B 
billion is being committed cross-government to develop QTs over the ten years from 2024, doubling 
current public investment, and generating an additional £1B of private investment.   Key pillars of the 
NQTP, as well as complementary initiatives by Other Government Departments (OGDs), include:- 
International Research Collaboration (IRC) and bi/multi-lateral partnerships (e.g. USA, Canada, 
Australia, NATO); the National Quantum Computing Centre (NQCC, to develop use cases with industry 
and help build UK supply chains); extensive university research networks and hubs (Figure 1) (e.g. 
centres for doctoral training and skills, 4 technology hubs for the development and commercialisation of 
QTs across communications, sensors and timing, enhanced imaging and computing); innovation 
accelerators and challenge led programmes to enhance and strengthen UK base. 

The UK MOD S&T strategy (to be ‘quantum ready’) is also to invest in Quantum for defence and security 
as part of the national strategy and as a complement to the NQTP, including through partnerships with 

1 See https://quantum-computing.ibm.com/composer/docs/iqx/manage/systems/processors 
2 See https://en.wikipedia.org/wiki/D-Wave_Systems for a good summary of company history and system developments.  Further 

in depth details available from www.dwavesys.com. 
3 An optimisation process for finding the global minimum of a given objective function over a given set of candidate solutions 

(candidate states), by a process using quantum fluctuations 
4 See https://www.orcacomputing.com/.   
5 https://uknqt.ukri.org/ 
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OGDs and including IRC.  Most of the research is delivered through Dstl research programmes,
sponsored by the MOD Chief Scientific Advisor (CSA) and the defence services, and working with 
industry and academia, on defence applications exploring threats and opportunities.  Quantum research 
reported in this paper was initiated in response to the findings of the review of the threats and 
opportunities landscape for UK defence and security in Quantum Information Processing (QIP) [8].  This 
research is part of the Dstl A2ISR (AI and Autonomy in the ISR Enterprise) multi-year project tasked 
under its AI programme (A2ISR) and in part by UK Strategic Command under the Quantum Enabled 
Intelligence (QEI) Pathfinder initiative.  Conjoining QIP and AI research is deliberate as exploiting the 
rapid S&T advances in both may offer greater value. 

3.0 QUANTUM ENABLED INTELLIGENCE RESEARCH

The QEI project explored the extent to which QC could enhance existing intelligence analysis 
tasks, especially imagery analysis/handling tasks, which are ubiquitous and computationally demanding. 
That is components of the image processing pipeline (Figure 2) where quantum processing could offer 
superior performance to, and overcome limitations of, State-Of-The-Art (SOTA) digital processors.  
The project aimed to (1) identify specific applications of QC algorithms in intelligence with their value 
for the MoD and to (2) perform initial experimental demonstrations.  Delivered in two phases by a 
team comprised of researchers from BAE Systems (first phase only), Universities of Glasgow, York 
and Durham (via nano-spinout company Quantum Chancellor) plus OxbrdgRbtx Ltd. 

Figure 1: UK university Quantum research network and hubs. 

Figure 2: Simplified view of pipeline for image processing .

3.1 Phase 1 Results and Outcomes

Phase 1 consisted of preliminary work in terms of workshops, held by BAE Systems with researchers and 
stakeholders, to identify specific applications of QC that would provide intelligence value to MoD.  Six use 
cases were highlighted that could be mature enough, estimated technology readiness levels and operational 
impact, within 5-10 years (Figure 3).  The processing and classification of images is a fundamental enabler 
of the applications offering the highest operational advantage, namely items 4, 5 and 6 in the figure.  Hence 
the focus of the experimental research.  Furthermore, the technical reviews concluded that a hybrid 
approach, digital and quantum, offered with ML the best exploitation path toward defence application 
systems, exploiting strengths of each.  As NNs are graph-based, like simpler Boltzmann Machines (BMs) 
and variants (Figure 4a,b,c), the selected approach was to embed such BM architectures on a quantum 
annealer, D-Wave system, for image classification. The selection of BMs is based on encouraging results 
from a growing body of research for such applications and that fewer epochs of training may be required 
than classical approaches [10], [11]. 
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Therefore, in parallel with the workshops, preliminary experimental work defined and implemented a hybrid 
ML architecture, with digital CPUs/GPU and D-Wave QPUs, to classify images from the MNIST dataset6 
and compare with digital system results alone.  Results shown in Figure 5, are using simple test images and 
three models trained with 5000 MNIST images, centre-cropped to 15x15, 19x19, and 27x27 pixels 
respectively.  Once trained, the output of the first layer of the models provides binary feature data 145, 230 
and 465 dimensions suitable for transfer to the D-Wave QPU.  Exploratory experiments also enabled 
comparison of using quantum annealer to the classical calculation of weight updates by Contrastive 
Divergence7. These showed an important finding that on an iteration-by-iteration basis, faster learning could 
be achieved compared to the classical calculation. 

Figure 4: Network schematics, (a) Boltzmann 
Machine; (b) Restricted Boltzmann Machine; (c) 
Sparse Boltzmann Machine. [Input nodes (yellow), 
hidden nodes (blue), output nodes (red)].

 Figure 5:  Performance using test images of QPU, GPU (CPU). 

Though the D-Wave is orders of magnitude slower than GPUs (can process many images together) these 
experiments were encouraging.  The experiments demonstrated quantum unsupervised image recognition 
and the automated transfer of trained RBM-based NNs between quantum and digital systems.  Training an 
NN requires many iterative cycles and QPUs.  Though this is slower, it converges much faster, requiring 
less epochs, than digital implementations.  Thus offering opportunities in the future and an area for further 
research in Phase 2.  Other findings from D-Wave sampling experiments to understand the limitations and 
potential, with system upgrades, of annealers are: 

• D-Wave devices act as high-quality thermal samplers;
• Thermal sampling for ML and optimisation are two fundamentally different tasks, and we should

use caution when applying results from the more studied optimisation regime;
• Integrating quantum annealers within broader classical architectures is not simply a matter of

replacing a classical processor with a faster version, but one of rethinking the entire structure to
make best use of highly specialised hardware.

6 Large database of handwritten digits used extensively to test machine learning for image processing (see 
https://en.wikipedia.org/wiki/MNIST_database) 

7 Gradient of the Contrastive Divergence is a measure of difference between the probability distributions of the input and 
reconstructed data. An approach to training which closely approximates the gradient of the log probability of the training data. 

Test  
Images 

Model Input Size> 145 230 465 
Processor Execution time μsecs 

10 QPU 1813.8 2014.4 2301.1 
10 GPU (CPU) 272.5 (10.9) 251.8 (13.9) 231.7 (13.5) 

100 GPU (CPU) 38.5 (15.2) 37.6 (15.8) 18.7 (17.2) 
1000 GPU (CPU) 3 (38.5) 3 (37.6) 3 (18.7) 

Figure 3: Use cases. Operational advantages and key technology enablers. 
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Further mathematical and technical details on the challenges and approaches needed to execute ML on a D-
Wave system architecture is in the paper by our co-researchers [12]. 

3.1 Phase 2 Results and Outcomes

In view of the findings from Phase 1 research, a full BM type NN implementation was the research focus 
for Phase 2 to ‘benchmark’ the impact on the speed and scalability of the image classification and 
compare to SOTA digital processors such as the Intel Neuralstick.  Images from MNIST dataset were 
used as before but compressed8 to embed using the native graph of the D-wave system.  

The maximum size of BM that can be enacted on a QPU is limited by the size of the QPU (the number of 
qubits on the chip) and this in turns limits the maximum image size that can be classified.  Not only does 
the overall number of qubits restrict the size of BM that can be implemented, the connectivity of the 
quantum annealer dictates the available links between qubits. Most qubits (all but those on the edges of 
the chip) in the D-Wave Advantage processor are connected to 15 other qubits. This prevents a fully 
connected BM from being implemented in all but the very smallest of cases without using additional 
embedding algorithms [13][14]. As the aim of the study was to exploit the native graph of the system, 
partially connected (sparse) BMs were designed (Figure 4c) for the larger problems.  

The time-to-train, a key benchmarking metric, is a compound measurement made up of a number of sub-
processes [13]. The current set up of the D-Wave application required each training sample to be sent 
across the internet to the D-Wave servers individually in every epoch.  

It was found that using the D-Wave QPU to train a BM took longer per epoch than the simulated 
annealing CPU but does scale much better with image size and number of reads.  This suggests that on 
larger problems, the QPU would be more efficient than equivalent classical methods. Additionally, 
when the timing was broken down into computational elements, the internet latency and queuing times 
were a significant portion of the time-to-train. On discovering this, the time-to-train for a hypothetical 
local QPU was estimated to remove internet latency – the “local epoch time” as shown in Figure 6 below. 
The I/O for this hypothetical local machine is unknown so the estimated time-to-train is a lower bound. 
Once the internet latency and queuing is removed, the most significant timing component is the gradient 
calculation, which is calculated on the CPU in all cases and accounts for the similar scaling between the 
Local QPU and CPU data.  

The D-Wave classification performance, even after what should be sufficient training, was found to be 
particularly poor. It is unknown if this was due to D-Wave parameter setting and/or the ‘sparseness’ of the 

8 Discrete Cosine Transformation compression algorithms as simple and low computational cost implementation 

Figure 6: Time per epoch to train a BM with 64 input nodes for a Simulated Annealing CPU, a D-Wave 
Advantage QPU and a hypothetic local, dedicated D-Wave Advantage QPU. A BM network with 64 input 
nodes is capable of ingesting an 8x8 pixel image. 
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BM. D-Wave machines are designed to perform optimisation problems and many of the default parameters 
are tuned to perform well in these application. Using the D-Wave QPU to perform a BM is likely to require 
very different parameters and this was not explored in this research. As mentioned previously, the physical 
size of the D-Wave QPU (the number of qubits) limited the size and overall connectivity of the BM networks 
that could be executed. It is possible that the resultant networks are too sparse to perform effectively as 
image classifiers.  

4.0 CONCLUSIONS

This paper has provided an overview of the quantum landscape, including the current state of play, key 
research areas and future aspirations.  It has shown that the UK has a strong, growing quantum community 
(government, academia and industry, including new start-ups), with its MOD playing a key role in steering, 
funding and executing the research and development in this area.  A key application being enhanced is 
intelligence analysis offered by quantum computer processing of imagery, analysis/handling tasks that are 
ubiquitous and computationally demanding.  The MoD funded Quantum Enabled Intelligence research 
project, delivered by multi-disciplinary team (government, industry and academia), investigated this as 
detailed in the paper.   It highlighted the processing and classification of images as a fundamental enabler 
offering the highest operational advantage (e.g. anomaly detection, critical change detection, enemy target 
behaviour and intent) and focussed the experimental research with the D-Wave Advantage 2.1 quantum 
annealer (computer).  The research explored and assessed the implementation of ML type algorithms on the 
annealer to aid comparison with digital systems where ML is the state-of-the-art.   

Overall, the research has successfully demonstrated, albeit for small images, the use of quantum annealers 
for image processing and classification, using Boltzmann Machine-based neural net algorithms. Work 
identified the training of ML algorithms (onerous area for digital systems) as offering most potential for 
quantum advantage in a hybrid system.  Algorithms to automate the transfer of training weights, between 
quantum and digital processors, in such a system were developed and used.  Benchmarking results show 
that the D-Wave learned faster (in fewer epochs) than the GPU equivalent but each epoch took longer to 
complete. The net result of this is that quantum training is only two to three orders of magnitude slower than 
a GPU. The notion of a ‘local QPU’ as described in section 3 showed that these results will likely be 
improved in the QPU’s favour with latter generations of hardware having more qubits, better connectivity 
and faster IO operations.  Latter factors are the current barriers to progress.   

Future work in this research strand will include hyper-parameter optimisation and the comparison between 
Boltzmann machines of varying sparsity. There are also related enquires such as whether that are alternative 
machine learning models that require less IO and would therefore be suitable for realising near-term 
quantum advantage. 
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